Are There Any GOOD Viruses?

Are there any viruses that are good for us? Any that will rejuvenate a liver, improve the digestion, smooth the skin – in addition to those that bring on polio, smallpox, Lyme, HIV, and the flu? Some bacteria, by comparison, digest our food even while others cause botulism and strep throat. Viruses come in plenty of varieties. Aren’t any of them welcome or even necessary to our health?

On the face of it, no. The basic action of viruses is destructive. These strips of DNA or RNA, enclosed in protein, don’t maintain a metabolism, can’t produce new protein, and can’t reproduce on their own. They are not alive – not as the term is usually defined. Viruses do only one thing that living cells do: they evolve. Which is why we need a new flu vaccine each year. But although a virus can’t reproduce by itself, it knows enough to insert itself into a living cell’s DNA, forcing it to make a new virus.  The vocabulary describing this process is military and agressive: the virus ‘takes over,’ ‘high-jacks,’ ‘subjugates’ or ‘commandeers’ the cell. The original cell continues to make viruses, or it withers, or it bursts. The living cell dwindles. The half-alive virus flourishes.

phages (wikipedia)

Photo of virus invading a bacterium  (Wikipedia)

For comparison, bacteria are living, single-cell organisms. They seek food and process it. They divide into two bacteria on their own. Because they are alive, bacteria can be killed – by antibiotics, by the body’s immune system, or even by particular viruses (bacteriophages, “bacteria-eaters”) that attack bacteria.

But viruses can not be killed in the same sense. They have no metabolism to disrupt. Instead, anti-viral medications disrupt and slow down their ability to usurp a healthy cell’s genome. But that takes time. If a weakened virus (such as a piece of one) is injected as a vaccine early enough, the immune system gets a head-start on preparing enough antibodies to stop the virus in its tracks. Maybe. If a virus morphs and the vaccine doesn’t work, pandemic looms.

So viruses are “good” for us only if they ruin cells that are ones we want to get rid of. If a cell is a cancer cell in the lung, breast, pancreas, or prostate, then bravo for the virus that bursts it. And bravo for the virus that destroys the bacteria that causes tuberculosis or cholera.

There is another way in which viruses can do good deeds. They are specialists at transporting their genetic material into a cell’s genome. So biologists use them to insert corrected DNA into a patient’s genes. Such gene therapy can cure inherited diseases like cystic fibrosis. So, bravo again!–not for the virus, but for the researchers that put this wicked tool to good use.

Viral replication seems to me a perversion of life’s ability to reproduce. Reproduction, perhaps the essential process of living things, is co-opted by a genetic strip to reproduce its lifelessness at the expense of a healthy cell.

Such depravity is the stuff of horror movies. In Rosemary’s Baby and the Alien films, demons and aliens find human bodies to breed in. Most of all, viruses make me think of Invasion of the Body Snatchers (1956). A post-war trope of McCarthyist paranoia and mindless conformity, Invasion tells of townspeople becoming “not themselves” as pods placed near bedrooms ripen to replace humans with look-alike automatons that collaborate to distribute more pods. At film’s end, despite efforts to warn the nation, truck-loads of pods roll on to cities, leaving the audience with little confidence about an end to the outbreak.

MV5BNDA3ZDAzMWUtM2YyMS00MTY5LWIzZTktN2E5MWIzZjJjMGMxXkEyXkFqcGdeQXVyNzc5NjM0NA@@._V1_

Walk, Run, Eat: The Evolution of Our Body

Visualizing the evolution of our bodies from our chimp ancestors to what we see in the mirror does not come easily. But Daniel E. Lieberman’s The Story of the Human Body: Evolution, Health, and Disease is a fine time machine. It took me back six million years to changes in our feet, legs, arms, head and torso, all molded as our ancestors searched for food.

Reconstruction of sahelanthropus tchadens, who lived six to seven million years ago. (smithsonianscience.org)

Reconstruction of Sahelanthropus tchadensis, who lived six to seven million years ago. Not your average chimp. (smithsonianscience.org)

Human evolution can be said to have begun when one of our ancestors developed a feature that is still unique to us: We walk on two legs. That ability separated us from our cousin chimps between six and seven million years ago. We remain the only two-footed walking animal that doesn’t carry the feathers of a bird or the tail of a kangaroo.

Why walk? We began walking when the fruit that we ate became sparser. The African continent was cooling and the forests were shrinking. (I’ve conflated the species that Lieberman names to “us.”) Those who could stand upright and walk distances on two feet found not only more fruit but also edible stems and leaves. We were chimp-size, but as bi-pedal walkers our arms and hands became free for new uses.

intermediate human

A reconstruction of Australopithecus bosei, “Nutcracker Man,” who lived two million years ago, discovered by Mary and Louis Leakey in 1959. Our intermediate stage. (Wikipedia)

The transition continued. By four million years ago, our anatomy had changed again. Foraging over distances fostered “more habitual and efficient long-distance walking.” Our feet acquired an arch that put a spring in our step and pushed the body forward. For stronger chewing, molars and jaws became much larger than ours today. These ancestors are nicknamed “Nutcracker Man.” We were still small but more upright, still with relatively long arms and short legs.

Next was the Ice Age, two and a half million years ago. Foraging over larger areas required more calories, calories that meat could provide. Our ability to throw accurately brought down animals. Sharp stone tools cut up their flesh to make chewable and digestible. We grew taller, with arms and legs close to today’s proportions. We developed external noses that humidify the air we inhaled during long walks. We began to run—far—with Achilles tendons for more spring and unique sweat glands and finer fur to stay cool.  As teeth and snouts shrank and brains grew, heads became rounder. Organized hunting and gathering became necessities. Generally, females gathered while males hunted. Unlike chimps, we shared food readily with extended families. Cooperation, coordination, and communication were means of survival. We—Homo erectus—became “significantly human.” 

homo erectus

Homo erectus reconstructed.
“Significantly human,” writes Lieberman. (Wikipedia)

Lieberman continues the story of our evolution into the present and discusses its relevance to disease. After millions of years of seeking food and storing its energy in our bodies whenever we could find it, today we eat more calories than we need while we burn off fewer calories than ever before. As a result we suffer from “mismatch diseases” like diabetes and conditions like hardening of the arteries that our ancestors never worried about. We may treat the symptoms successfully, but given evolution’s slow clock, we won’t be adapting to resist them any time soon.

But we are always walking. We walked our way into becoming human, we walked our way around the world and into history, we speak of journeys, progress, protest marches. There is little else we do that is more essentially us.

march of progress

The original version of the “March of Progress,” from Time magazine in 1965. The details are out of date now but the image remains indelible.
(Wikipedia)